Original article

Epileptic Disord 2016; 18 (3): 315-23

7 tesla T₂*-weighted MRI as a tool to improve detection of focal cortical dysplasia

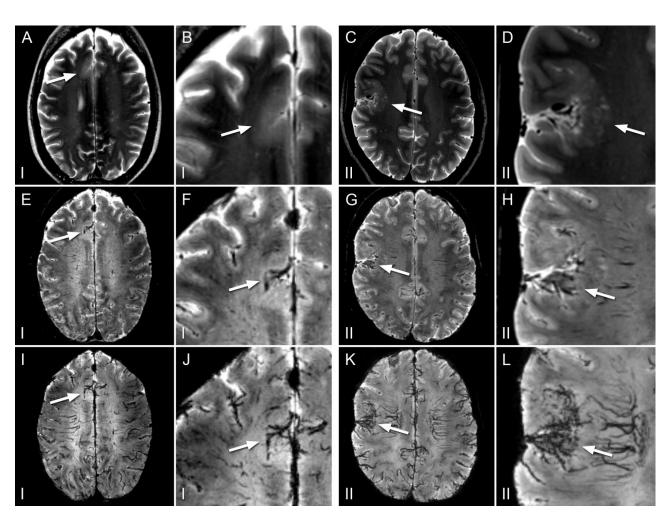
Tim J. Veersema ¹, Pieter van Eijsden ¹, Peter H. Gosselaar ¹, Jeroen Hendrikse ², Jaco J.M. Zwanenburg ², Wim G.M. Spliet ³, Eleonora Aronica ⁴, Kees P.J. Braun ¹, Cyrille H. Ferrier ¹

- ¹ Department of Neurology and Neurosurgery, Brain Center Rudolg Magnus, University Medical Center Utrecht
- ² Department of Radiology, University Medical Center Utrecht
- ³ Department of Pathology, University Medical Center Utrecht
- ⁴ Academic Medical Center, Department of Pathology, Amsterdam, The Netherlands

Received July 17, 2015; Accepted May 16, 2016

Study Summary

- Retrospective review of patients with histologically proven cortical dysplasia
 (FCD and mMCD)
- Reassessment of T2* weighted sequence (= susceptibility contrast based, sensitive for deoxyhemoglobin in venous blood, calcifications and blood break-down products etc.)
- In 4 of 6 patients:T2* signal changes co-localizing with dysplasia
- Suggestive of increased venous vasculature in the sulci neighboring the malformed cortex.
- Could be possibly used as MRI marker for dysplasia.


gradient echo T_2^* : isotropic 0.5mm resolution, echo time 27ms, flip angle 24°, repetition time 57-93ms (shortest possible), with EPI and flow compensation.

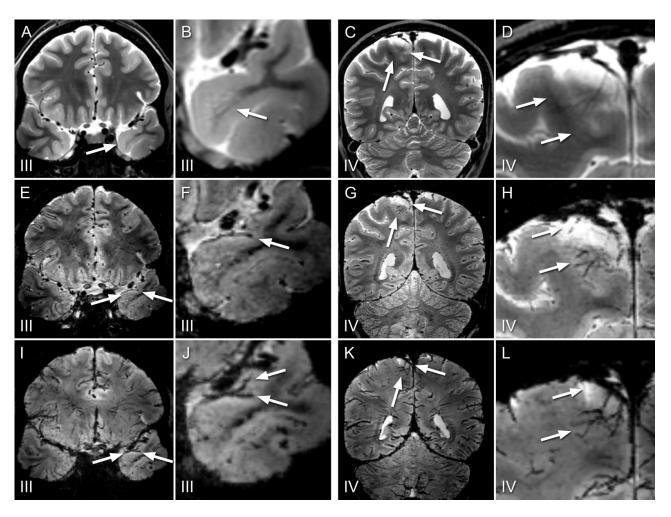
Summarized patient characteristics

Pat.	Sex/age	T2* 7T	Surgery	Histopathology
I	♀/45	Hypointensities R frontal parasagittal	R Partial lobectomy frontal parasagittal	ILAE FCD IIb
П	♀/22	Hypointensities R inferior frontocentral	R inferior frontocentral Lesionectomy	ILAE FCD Ib
III	♀/25	Hypointensity superior anterior temporal pole	L ant temp lobectomy + amygdalohippo- campectomy.	mMCD type 2 (no hippocampal sclerosis)
IV	♀/12	Hypointensity in wide sulcus R central	R pre-central lesionectomy.	FCD IIb
V	ੋੰ/15	No abnormalities	R basotemporo- occiptal Lesionectomy	FCD IIa
VI	<i>₹⊓</i>	No abnormalities	R Front Lesionectomy	FCD IIa

Cases I & II

7T T_2 (A-D), T_2 * (E-H) and T_2 * minimum intensity projection (I-L), transverse reconstructions. Lesions depicted in detail in B, D, F, H, J and L.

Patient I;


FCD ILAE type IIb (A, B, E, F, I, J). No lesion identified on 3T MRI, subtle gray-white matter junction blurring is seen on 7T T_2 weighted MRI (A, B). On T_2^* (E, F) the neighboring sulcus seems to contain prominent vasculature. T_2^* minimum intensity projection (I, J) aids in the visual detection.

Patient II;

FCD ILAE type Ib (C, D, G, H, K, L). T_2 -weighted MRI (C, D) shows greywhite matter junction blurring and cortical thickening indicative of FCD. In the same area T_2 * (G, H) shows a wide sulcus with prominent vascular structures. T_2 * minimum intensity projection (K, L) strongly emphasizes the increased vasculature.

Cases III & IV

7T T_2 (A-D), T_2 * (E-H) and T_2 * minimum intensity projection (I-L), coronal reconstructions. Lesions depicted in detail in B, D, F, H, J and L.

Patient III; mild malformation of cortical development type 2 (A, B, E, F, I, J). On T_2 (A, B), blurring and subcortical hyperintensity represent developmental malformation. T_2^* (E, F) shows a wide Sylvian fissure but no clearly appreciable vascular changes. On T_2^* minimum intensity projection (I, J) there appears to be an increase in vascular signal in the superior temporal pole.

Patient IV;

FCD ILAE type IIb. (C, D, G, H, K, L). On T_2 (C, D) notable large extracerebral space central parasagittal containing a large vein, but without evident dysplastic characteristics but. T_2 * (G, H) shows the large vein and smaller vasculature that drains from the dysplastic cortex (as proven by histology). Enhanced conspicuity on T_2 * minimum intensity projection (K, L).

