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IL-17A and TNF-α-induced Dectin-1 expression 
may promote keratinocyte proliferation  
in psoriatic lesions

Background: Psoriasis is a common skin disease with a high  recurrence 
rate. Aberrant keratinocyte proliferation is a significant pathogenic 
characteristic of psoriatic lesions, and studies have revealed that the 
development of psoriasis is significantly influenced by pro-inflam-
matory cytokines, such as IL-17A and TNF-α. Biologics targeting 
these cytokines have been widely used in psoriasis treatment and 
achieve remarkable effects, however, the underlying mechanism of 
how IL-17A and TNF-α specifically regulate keratinocyte prolifer-
ation has not been fully elucidated. Dectin-1 is an essential mem-
brane protein that is directly related to the immune microenvironment 
and the proliferation of multiple cell types. Objectives: To elucidate 
how IL-17A and TNF-α may promote keratinocyte proliferation 
in psoriatic lesions and whether Dectin-1 is involved. Materials & 
Methods: The expression of Dectin-1 in keratinocytes from psoriatic 
lesions was detected by real-time PCR, western blot and immuno-
fluorescence. Correlation analysis and cytological experiments were 
then performed to determine the relationship between Dectin-1 and 
IL-17A/TNF-α in psoriatic lesions. Finally, we investigated the sig-
nalling pathway through which Dectin-1 may promote keratinocyte 
proliferation. Results: Dectin-1 was significantly increased in kerati-
nocytes from psoriatic lesions. Moreover, IL-17A and TNF-α effec-
tively induced the expression of Dectin-1 in HaCaT cells, which was 
shown to activate the Syk/NF-κB signalling pathway and promote 
the proliferation of keratinocytes. Conclusion: IL-17A and TNF-α 
may promote the proliferation of keratinocytes in psoriatic lesions 
through induction of Dectin-1, indicating that Dectin-1 could be a 
potential therapeutic target for the treatment of psoriasis.
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P soriasis is a common skin disease with typical 
clinical manifestations of scaly erythema, papules 
and plaques formed by abnormal proliferation 

and differentiation of keratinocytes [1]. To date, psoriasis 
remains associated with a high prevalence of morbidity 
and recurrence, and current clinical treatments are 
almost ineffective in preventing its recurrence, placing a 
heavy burden on patients [2, 3]. Therefore, it is necessary 
to further explore the pathogenesis of psoriasis and 
develop novel therapeutic targets.
Reports have indicated that a variety of immune cells, 
such as Th1 and Th17, are significantly increased in pso-
riatic lesions, resulting in elevated levels of local pro-in-
flammatory cytokines, such as IL-17A and TNF-α [4]. 
Moreover, IL-17A and TNF-α have been shown to play 
important roles in the pathogenesis of psoriasis [5, 6]. 
To date, a variety of biologics targeting these cytokines 
have been widely used in clinical practice, and have 
achieved excellent efficacy [7, 8]. However, these biolog-
ics still cannot completely prevent the recurrence of pso-
riasis, and some patients remain insensitive to these 

biologics [9, 10]. Therefore, further studies are required 
in order to elucidate the specific regulatory effect of 
IL-17A and TNF-α on the development of psoriasis, 
especially regarding their impact on the proliferation of 
keratinocytes.
Dectin-1, also called human C-type lectin domain family 
7 member A (CLEC7A), is a widely expressed small type 
II membrane receptor glycoprotein [11, 12]. Dectin-1 is 
composed of an extracellular C-type lectin-like domain 
and a cytoplasmic domain with an immunoreceptor 
tyrosine-based activation motif [13, 14]. Dectin-1 acts as 
one of the pattern recognition receptors (PRRs) that can 
recognize multiple kinds of β-1,3-linked and β-1,6-linked 
glucans from fungi or plants, and therefore affect the 
innate immune response [15-17]. Research on skin 
wounds has shown that Dectin-1 activation can induce 
keratinocytes to proliferate, migrate, and promote 
wound re-epithelialization. This effect may be related to 
Dectin-1 sensing early damage signals, which can induce 
chemokine production and early neutrophil aggregation 
[18, 19]. To sum up, these findings suggest that Dectin-1 
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might play an important role in the local immune 
microenvironment of psoriatic lesions and influence the 
proliferation of keratinocytes.
In this study, we found that Dectin-1 is significantly 
increased in keratinocytes from psoriatic lesions. Further 
study revealed that IL-17A and TNF-α can effectively 
induce the expression of Dectin-1 in HaCaT cells, which 
was shown to effectively promote proliferation. 
Mechanistically, enhanced Dectin-1 may boost the pro-
liferation of keratinocytes via activation of the Syk/
NF-κB signalling pathway.

Materials and methods

Patients and normal donor specimens
The diagnosis of psoriasis was based on the typical clin-
ical manifestations and pathological examination in the 
Department of Dermatology, Tongji Hospital (Wuhan, 
China). All human tissue specimens were obtained from 
the Pathology Research Unit of the Department of 
Dermatology, Tongji Hospital, and were collected with 
the consent of patients and healthy donors.

Animal experiments
Eight-week-old female BALB/c mice were purchased 
from Beijing Vital River Laboratory Animal Technology 
(Beijing, China) and were individually housed in a spe-
cific pathogen-free barrier facility. The mice received 
daily topical doses of 62.5 mg IMQ cream (Mingxin 
Pharmaceuticals, Sichuan, China) or Vaseline on shaved 
backs for seven consecutive days. Disease severity was 
assessed using a scoring system based on the clinical 
Psoriasis Area and Severity Index (PASI). More specif-
ically, erythema, scaling, and thickening were scored 
independently on a scale from 0 to 4 (0 = none, 1 = slight, 
2 = moderate, 3 = marker, 4 = very marked), and the 
cumulative score was used as a total score (scale: 0-12). 
Disease severity was assessed by two experienced 
researchers in a blinded manner. On day 8, serum sam-
ples and skin tissues were collected from the sacrificed 
mice for subsequent studies.

Cell lines
Human immortal keratinocyte HaCaT cells were pur-
chased from the China Center for Type Culture 
Collection (CCTCC, Wuhan, China) and were cultured 
according to the instructions. Before the trial began, 
HaCaT cells were checked for mycoplasma, interspecies 
cross-contamination, and authenticity using short tan-
dem repeat profiling and isoenzyme analysis at the 
CCTCC. HaCaT cells were cultured for a maximum of 
15 passages.

Haematoxylin and eosin (H&E) staining
The skin tissues of mice were embedded in paraffin wax 
after being fixed in 4% paraformaldehyde solution. 
Following serial sectioning and haematoxylin and eosin 
(H&E) (Baso, Zhuhai, China) staining, these tissues 

were evaluated histologically. Epidermal thickness was 
measured using Image-pro Plus 6.0 software. Three pho-
tographs were taken randomly for each section under 
high magnification, and for each field of view, at least 
three measurements were taken.

RNA interference
siRNAs targeting the genes of interest and a negative 
control siRNA were purchased from RiboBio 
(Guangzhou, China). Details of the gene sequences are 
shown in supplementary table 1. Cells were transfected 
with siRNAs using Lipofectamine 2000 (Invitrogen, 
USA). The effect of silencing was verified by real-time 
PCR and western blot.

Cell counting
Different groups of HaCaT cells were inoculated in 
equal amounts in six-well plates, in two replicate wells. 
Each cell group was counted with a haematocyte counter 
after 24 h, 48 h and 72 h, respectively. Each well was 
counted three times using a manual counter, and the 
average value was taken for analysis.

Cell Counting Kit 8 (CCK-8) assay
Different groups of HaCaT cells were cultured at a den-
sity of 1×103 cells/well in 96-well plates at 37°C. After 
incubation for indicated time points, 10 μL of CCK-8 
solution (DOJINDO, Japan) was added to each well, 
and cultured at 37°C with light protection for two hours. 
Optical density (OD) values were then recorded at 
450 nm using an enzyme-labelled instrument.

Detection of cell apoptosis
Apoptosis of different HaCaT cell groups was detected 
using the Annexin-V/PI Apoptosis Detection Kit 
(KeyGen Biotech, China) according to the manufactur-
er’s protocol and then analysed using an Accuri C6 flow 
cytometer (BD Biosciences, USA).

Real-time PCR
Total RNA of sample cells was extracted using TRIzol 
reagent (Invitrogen, USA) following the manufacturer’s 
protocols. Real-time PCR analysis was performed using 
the SYBR Green PCR mix (Toyobo, Japan) on a CFX 
Connect Real-Time PCR Detection System (Bio-Rad, 
Canada). Comparative quantitative mRNA levels of 
cells were normalized to the housekeeping gene, β-actin. 
Primers for real-time PCR were synthesized by Tsingke 
Biotechnology (Beijing, China). The primer sequences 
are shown in supplementary table 2.

Immunofluorescence
Wax blocks of tissue specimens were prepared as out-
lined above and serial sectioning was performed. Before 
staining, the sections were subjected to antigen retrieval 
in sodium citrate buffer (0.01 M, pH 6.0) at 100°C for 
15 minutes and incubated with 10% normal goat serum 
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for one hour, followed by incubation overnight at 4°C 
with a target protein antibody. Anti-CLEC7A was pur-
chased from ABclonal (Wuhan, China), and Alexa 
Fluor® 488-conjugated goat anti-rabbit IgG (Servicebio, 
Wuhan, China) was used as a secondary antibody. After 
staining the nuclei with DAPI for 15 minutes, the sec-
tions were prepared to observe immunofluorescence 
using an OLYMPUS BX51 fluorescence microscope.

Western blot analysis
Cell samples were lysed using a combination of NP40, 
a protease inhibitor, and a phosphatase inhibitor. 
Antibodies for western blot analysis included: anti-β-
actin (ABclonal), anti-CLEC7A (ABclonal), anti-NF-κB 
p65 (Abmart, Beijing, China), anti-NF-κB Pho-p65 
(Abmart), anti-Syk (Cell Signal Technology, USA), and 
anti-Pho-Syk (Cell Signal Technology) antibodies at the 
recommended dilutions.

Statistical analysis
Datasets from the Gene Expression Omnibus database 
(https://www.ncbi.nlm.nih.gov/geo/) were analysed 
using R software (v.4.0.1). All experimental data were 
analysed by t-tests using GraphPad Prism 9.0 software, 
and then expressed as mean ± SEM. Differences were 
regarded as statistically significant at p<0.05.

Results

WGCNA analysis of psoriasis-related datasets 
from the GEO database
Previous studies have found that, compared to the nor-
mal epidermis, Dectin-1 expression is increased in pso-
riatic lesions [20, 21]. To more precisely investigate the 
expression of Dectin-1 in psoriatic skin lesions, we first 
searched for psoriasis-related sequences in the GEO 
database and integrated the datasets based on the 
GPL570 platform (GSE13355, GSE14905 and 
GSE78097). The expression profiles with complete fol-
low-up information were normalized (supplementary 
figure 1A, B). The expression density plot also revealed 
that the batch effect of the GPL570 meta-cohort had 
been clearly removed (supplementary figure 1C, D). 
Finally, the Uniform Manifold Approximation and 
Projection (UMAP) analysis showed the distribution of 
each dataset before and after removal of batch effect 
(supplementary figure 1E, F). WGCNA was performed 
using the expression profiles in the GPL570 meta-cohort. 
The soft threshold power in the GPL570 meta-cohort 
was 7 (figure 1A, B). Subsequently, dynamic module 
identification was performed for the different cohorts, 
with the number of genes per module no lower than 30 
(figure 1C). For the GPL570 meta-cohort, 18 co-expres-
sion modules were clustered, with the black module 
having the strongest positive correlation with psoriasis 
clinical traits (figure 1D). In the black module, positive 
correlations were observed between module membership 
(MM) and gene significance (GS) (figure 1E). In total, 
102 genes in the black module were screened as potential 

psoriasis-related genes using MM > 0.9 and GS > 0.8 as 
thresholds. Based on limma analysis, we obtained 720 
differentially expressed genes (DEGs) including 467 
up-regulated DEGs and 253 down-regulated DEGs, 
which were partially shown on the heatmap (supplemen-
tary figure 2). Finally, based on the intersection of 467 
up-regulated DEGs with 102 hub genes in the black gene 
module and protein-protein interaction (PPI) network 
analysis (supplementary figure 3), we identified Dectin-1 
for further study on the basis that it may play an impor-
tant role in the  pathogenesis of psoriasis.

Dectin-1 expression in keratinocytes from  
psoriatic lesions
We first analysed the expression of Dectin-1 in the 
GPL570 meta-cohort and found that Dectin-1 was sig-
nificantly increased in psoriatic lesions (figure 2A). We 
then analysed the expression of Dectin-1 in GSE78097 
and found that Dectin-1 was significantly upregulated 
in mild and severe plaque psoriatic lesions, but there was 
no significant difference between mild and severe plaque 
psoriatic lesions (figure 2A). Moreover, Dectin-1 was 
also upregulated in palmoplantar pustular psoriasis 
(PPPP) compared with healthy palm skin (figure 2A). 
The expression of Dectin-1 in psoriatic lesions was sig-
nificantly inhibited by anti-IL-17A (secukinumab) treat-
ment in GSE137218 or etanercept treatment in 
GSE106992 (figure 2B). We then performed real-time 
PCR to verify the expression of Dectin-1. As expected, 
markedly higher levels of Dectin-1 were observed in pso-
riatic lesions compared to healthy skin (figure 2C). 
Subsequent immunofluorescence analysis showed that 
the expression of Dectin-1 in keratinocytes from psori-
atic lesions was noticeably higher than that in healthy 
skin tissue (figure 2D).
To further confirm this finding, we used imiquimod 
(IMQ) to construct a psoriasis-like dermatitis mouse 
model, and Vaseline was used as a control (figure 3A). 
Epidermal thickness and PASI score of both groups were 
then evaluated (figure 3B, C). Western blot analysis 
revealed that the expression of Dectin-1 was apparently 
upregulated in the psoriasis-like lesions of the IMQ 
mouse model compared to the control group (figure 3D). 
Immunofluorescence analysis showed the same results 
(figure 3E). Furthermore, the mRNA expression level of 
Dectin-1 was also significantly higher in the psoria-
sis-like lesions of the IMQ mouse model compared to 
the control group (figure 3F). Collectively, these studies 
demonstrated that the expression level of Dectin-1 was 
significantly increased in lesions from either psoriasis 
patients or the mouse model.

Effect of IL-17A and TNF-α on Dectin-1 
expression in keratinocytes
Previous reports have indicated that numerous pro-inflam-
matory cytokines play important roles in the pathogenesis 
of psoriasis [22, 23]. Pro-inflammatory cytokines, such as 
IL-17A and TNF-α, can effectively induce abnormal hyper-
activity of the local immune response, which in turn induces 
abnormal proliferation and differentiation of keratinocytes 
[1, 24]. However, how IL-17A and TNF-α specifically 



122 EJD, vol. 34, n° 2, March-April 2024

regulate the proliferation of keratinocytes in psoriatic 
lesions has not been fully elucidated.
As mentioned above, the expression of Dectin-1 was 
clearly shown to be increased in keratinocytes from 

psoriatic lesions. To further investigate the relationship 
between the expression levels of IL-17A/TNF-α and 
Dectin-1, we first performed a correlation analysis based 
on the GPL570 meta-cohort. A positive correlation was 

Figure 1. Bioinformatics analysis of important molecules in keratinocytes from psoriatic skin lesions. A) Scale independence 
in the GPL570 meta-cohort. B) Mean connectivity in the GPL570 meta-cohort. C) Gene dendrogram and modules after 
merging in the GPL570 meta-cohort. D) Pearson correlation analysis of merged modules and clinical traits in the GPL570 
meta-cohort. E) Scatterplot of MM and GS from the black module in the GPL570 meta-cohort.
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demonstrated between the level of Dectin-1 (CLEC7A) 
and IL-17A (figure 4A), and Dectin-1 (CLEC7A) expres-
sion also positively correlated with TNF-α (figure 4B). 
Following this, we stimulated HaCaT cells with IL-17A 
or TNF-α cytokine, revealing that this stimulation 
boosted the expression of Dectin-1(figure 4C-F). These 

findings demonstrated that IL-17A and TNF-α could 
effectively induce Dectin-1 expression in keratinocytes 
from psoriatic lesions, suggesting that Dectin-1 might 
be a crucial element through which IL-17A and TNF-α 
affect keratinocytes. A number of reports have indicated 
that the activation and effect of Dectin-1 is dependent 

Figure 2. The expression of Dectin-1 is significantly increased in keratinocytes from psoriatic skin lesions. A) mRNA expres-
sion of Dectin-1 in the GPL570 meta-cohort, GSE78097 and GSE80047. B) mRNA expression of Dectin-1 after anti-IL-17A 
(secukinumab) treatment in GSE137218 and etanercept treatment in GSE106992. C) Comparison of mRNA expression of 
Dectin-1 in keratinocytes isolated from psoriatic lesions. D) Immunofluorescence analysis of Dectin-1 in psoriatic lesions and 
normal skin. Bars indicate 50 μm. Data are expressed as means ± SEM. ∗p<0.05, ∗∗∗p<0.001, ∗∗∗∗p<0.0001.
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on the presence of its endogenous ligands [13]. According 
to several bioinformatics analyses, we found that the 
expression of endogenous ligands, such as Galectin-9 
and Annexin A13, was upregulated in psoriatic lesions 
based on the GPL570 meta-cohort (figure 4G, H). To 
further investigate the relationship between the expres-
sion levels of IL-17A/TNF-α and Galectin-9/Annexin 
A13, we performed a correlation analysis based on the 
GPL570 meta-cohort. The level of Galectin-9 showed a 
positive correlation with that of TNF-α (figure 4I), sug-
gesting that the endogenous ligands might be involved 
in the regulatory effect of TNF-α on Dectin-1. However, 
the expression level of Annexin A13 did not significantly 
correlate with that of IL-17A and TNF-α (figure 4J), 
indicating that other intermediate molecules, such as 
important transcription factors, are also involved in 

IL-17A/TNF-α-mediated Dectin-1 expression, and fur-
ther research is required to elucidate this.

Effect of IL-17A and TNF-α-induced Dectin-1  
on keratinocyte proliferation
Pro-inflammatory cytokines, IL-17A and TNF-α, are 
reported to effectively promote the proliferation of 
keratinocytes in psoriatic lesions [25-27]. However, our 
cytological study found that while IL-17A indeed signif-
icantly promoted the proliferation of HaCaT keratino-
cytes, TNF-α did not exhibit a significant pro-proliferative 
effect (figure 5A, B). We speculated that this phenome-
non might be related to the fact that TNF-α could also 
promote apoptosis of keratinocytes [28, 29], which we 
demonstrated to be the case (figure 5C, D). Our data 

Figure 3. Dectin-1 is significantly increased in keratinocytes from mouse psoriatic skin lesions. A-C) Phenotypic presentation 
and H&E staining (for H&E staining, bars indicate 100 μm) (A), epidermal thickness (B) and PASI score (C) of the control 
and IMQ group. D) Protein levels of Dectin-1 in the control and IMQ group. E) Immunofluorescence analysis of Dectin-1 
in the control and IMQ group (bars indicate 50 μm). F) Comparison of mRNA expression of Dectin-1 in keratinocytes 
isolated from both groups. Data are expressed as means ± SEM. ∗p<0.05, ∗∗∗p<0.001, ∗∗∗∗p<0.0001.
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Figure 4. IL-17A and TNF-α induce the expression of Dectin-1 in HaCaT keratinocytes. A, B) Relationship between the 
expression level of Dectin-1 and IL-17A (A) or TNF-α (B) of  the combined dataset using Pearson correlation. C) Protein 
levels of Dectin-1 in HaCaT cells upon treating with IL-17A or TNF-α were detected at different concentration. D) Protein 
level of Dectin-1 in HaCaT cells upon treating with 25 ng/mL IL-17A or TNF-α at indicated time points. E) mRNA 
expression level of Dectin-1 in HaCaT cells upon treating with 25 ng/mL IL-17A at indicated time points. F) mRNA 
expression level of Dectin-1 in HaCaT cells upon treating with 25 ng/mL TNF-α at different time points. G) mRNA 
expression level of Galectin-9 in the GPL570 meta-cohort. H) mRNA expression level of Annexin A13 in the GPL570 
meta-cohort. I) Relationship between the expression level of Galectin-9 and TNF-α or IL-17A of the combined dataset 
using the Pearson correlation. J) Relationship between the expression level of Annexin A13 and TNF-α or IL-17A of the 
combined dataset using the Pearson correlation. Data are expressed as means ± SEM. ∗∗p<0.01, ∗∗∗p<0.001, ∗∗∗∗p<0.0001.
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therefore indicate that IL-17A and TNF-α effectively 
induce the expression of Dectin-1 in keratinocytes. To 
further confirm the effect of Dectin-1 on the prolifera-
tion of keratinocytes, we silenced the expression of 
Dectin-1 in HaCaT cells using siRNAs (figure 6A) and 
then analysed cell proliferation in vitro. The results 
showed that after Dectin-1 silencing, there was no sig-
nificant change in apoptosis of HaCaT cells (figure 6B, 
C), however, proliferation of HaCaT cells significantly 
decreased (figure 6D, E). The above results demonstrate 
that increased Dectin-1 induced by IL-17A and TNF-α 
could effectively promote the proliferation of 
keratinocytes.

Effect of Dectin-1 expression on activation  
of the Syk/NF-κB signalling pathway
The aforementioned investigations reveal that increased 
Dectin-1, induced by IL-17A and TNF-α, promotes the 
proliferation of keratinocytes, however, the exact mech-
anism remains unknown. To further explore how 
Dectin-1 may promote the proliferation of keratino-
cytes, we silenced the expression of Dectin-1 in HaCaT 
cells using siRNAs, and investigated activation of the 
Syk/NF-κB signalling pathway. Upon Dectin-1 silenc-
ing, activation of the Syk/NF-κB signalling pathway was 
considerably reduced (figure 7A, B). Additionally, we 
exposed HaCaT cells to curdlan, a small molecule acti-
vator of Dectin-1, and found that curdlan induced the 
expression of Dectin-1 in HaCaT cells and enhanced 
their proliferation (figure 7C). In addition, curdlan stim-
ulation also significantly activated the Syk/NF-κB sig-
nalling pathway (figure 7D).

In conclusion, these studies indicate that increased 
IL-17A and TNF-α in psoriatic lesions may induce the 
expression of Dectin-1 in keratinocytes, which in turn 
may activate the Syk/NF-κB signalling pathway, thereby 
promoting the proliferation of keratinocytes.

Discussion

As a common chronic skin disease, the incidence and 
recurrence rate of psoriasis is high [30]. Despite the 
fact that there have been numerous studies on psori-
asis in recent years and many biological agents have 
been widely used, the high recurrence rate of psoriasis 
continues to be a challenge for researchers. To date, 
many studies have found that aberrant immune 
responses are directly associated with the onset and 
progression of psoriasis [31-33]. Among them, pro-in-
flammatory cytokines, such as IL-17A and TNF-α, 
play important roles in the aetiology of psoriasis, and 
monoclonal antibodies targeting these cytokines are 
widely used in clinical treatment, achieving excellent 
efficacy [34, 35].
However, the intrinsic mechanism by which IL-17A and 
TNF-α affect the proliferation of keratinocytes in pso-
riatic lesions is still not completely understood. In addi-
tion, numerous commonly used monoclonal antibodies 
for the treatment of psoriasis have their drawbacks, 
including inadequate efficacy, drug resistance, and recur-
rence [36-38]. Therefore, our understanding of the pre-
cise regulatory effects of IL-17A and TNF-α on 
keratinocytes of psoriatic lesions requires further study, 
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which is of particular importance regarding optimizing 
current therapy or developing novel biological agents.
In this study, we found that the expression of Dectin-1 
was significantly increased in keratinocytes in psoriatic 
lesions, and Dectin-1 expression significantly positively 

correlated with IL-17A and TNF-α levels in these 
lesions. Moreover, the expression levels of the endog-
enous ligands, Galectin-9 and Annexin A13, were also 
upregulated in psoriatic lesions, and the expression 
level of Galectin-9 positively correlated with that of 
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TNF-α, suggesting that Galectin-9 might be involved 
in the effect of TNF-α on Dectin-1. We then found that 
IL-17A and TNF-α effectively induced the expression 
of Dectin-1 in keratinocytes in vitro, and the prolifer-
ation of keratinocytes was significantly decreased after 
Dectin-1 silencing. Furthermore, we showed that 
Dectin-1 expression activates the Syk/NF-κB pathway 
in keratinocytes. Previous research has demonstrated 
that Syk and NF-κB are crucial for keratinocyte pro-
liferation [39, 40]. However, the specific mechanisms 
through which IL-17A and TNF-α can promote the 
expression of Dectin-1 are still unclear. To date, there 
are few reports on the specific regulatory mechanisms 
underlying the expression of Dectin-1. Studies indicate 

that granulocyte-macrophage colony-stimulating fac-
tor and cytokines, such as IL-4 and IL-13, can promote 
the expression of Dectin-1 in mouse peritoneal mac-
rophages, and IL-33 induces the production of Dectin-1 
in rat monocytes [41]. However, reports have also 
demonstrated that there are differences in the open 
regulatory sites of the Dectin-1 gene in different cell 
types, and the specific regulatory mechanisms remain 
unknown [42].
In conclusion, our study shows that elevated IL-17A and 
TNF-α effectively induce the expression of Dectin-1 in 
keratinocytes, thereby activating the Syk/NF-κB path-
way and promoting keratinocyte proliferation, which in 
turn may promote the development of psoriasis. 
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Although it is unclear how IL-17A and TNF-α promote 
the expression of Dectin-1 in keratinocytes, we believe 
our findings offer a novel mechanism through which 
IL-17A and TNF-α can affect the proliferation of kerat-
inocytes in psoriatic lesions, and indicate that Dectin-1 
might become a new target for optimizing current bio-
logical agent therapy. ■
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