Epileptic Disord 2022; 24 (4): 733-734



## Prominent artifact on EEG due to abnormal eye movements

Roohi Katyal, Jennifer L. Hopp

University of Maryland Medical Center – Neurology, 110 S. Paca St., 3S-131 Baltimore Maryland 21201-1595, USA

Received February 8, 2022; Accepted April 2, 2022 We report a 56-year-old man with severe encephalopathy due to ehrlichiosis. Examination was significant for a comatose state and lack of spontaneous eye opening. Ocular examination showed eye movements in different directions including horizontal plane and frequent, fast downward eye movements followed by a slower upward component. Activity corresponding to these eye movements on EEG was seen as asymmetric high-voltage potentials in the anterior channels with a rapid ascending phase, followed by a slower descending phase. This, at times, was followed by a slow after-wave, thus simulating a sharp wave (*figure 1*).

An electrooculogram (EOG) was utilized for further characterization of these



■ Figure 1. EEG in a longitudinal bipolar montage showing high-voltage potentials with sharp morphology maximum in the bilateral anterior channels with sharply rising ascending phase followed by a slower descending phase (blue arrow). Note the presence of a positive phase reversal in EOG corresponding to the high-voltage deflections with sharp morphology. EEG settings: Sensitivity 10 uV/mm, HFF 70 Hz, LFF 1 Hz. EOG settings: Sensitivity 15 uV/mm, HFF 70 Hz, LFF 1 Hz.

BY NC ND

• Correspondence: Jennifer L. Hoop University of Maryland School of Medicine University of Maryland Medical Center Department of Neurology 110 S. Paca St., 3S-131 Baltimore, MD 21201 Academic Office Telephone: 410-328-6266 <rkatyal@som.umaryland.edu>



**Figure 2.** Additional similar asymmetric potentials recorded in the anterior channels (blue arrows) noted throughout the record. Note the presence of a positive phase reversal in EOG corresponding to the high-voltage deflections with sharp morphology confirming that these are in fact eye movements. EEG settings: Sensitivity 20 uV/mm, HFF 70 Hz, LFF 1 Hz. EOG settings: Sensitivity 30 uV/mm, HFF 70 Hz, LFF 0.5 Hz.

deflections. All similar potentials recorded in the anterior channels corresponded to an EOG phase reversal (*figure 2*).

It is crucial to accurately distinguish non-epileptiform transients with sharp morphology from interictal epileptiform discharges to avoid misdiagnosis. A recent study showed a high specificity of >95% in identification of epileptiform discharges using a cut-off of five out of six criteria proposed by the International Federation of Clinical Neurophysiology [1]. Additionally, an EOG in which eye movements can be identified with opposite phase deflections can further aid in identifying this finding [2].

## Supplementary material.

Summary slides accompanying the manuscript are available at www.epilepticdisorders.com.

## References

1. Kural MA, Duez L, Sejer Hansen V, Larsson PG, Rampp S, Schulz R. Criteria for defining interictal epileptiform discharges in EEG: a clinical validation study. *Neurology* 2020; 94(20): e2139-47.

2. Rosado Coelho C, Fernandez-Baca Vaca G, Lüders HO. Electrooculogram and submandibular montage to distinguish different eye, eyelid, and tongue movements in electroencephalographic studies. *Clin Neurophysiol* 2018; 129(11): 2380-91.