

The ventral precuneal-posterior cingulate region as a site of epileptogenicity

Lee Elisevich¹, Shan Abbas^{2,3}, David Burdette^{2,3}, Gabe Heredia⁴, Kost Elisevich^{2,3}

¹ School of Medicine, Central Michigan University, Mount Pleasant MI, USA

² Department of Clinical Neurosciences, Spectrum Health, Grand Rapids, MI, USA

³ College of Human Medicine, Michigan State University, Grand Rapids, MI, USA

⁴ Imaging Physics, Department of Radiology, Spectrum Health, Grand Rapids, MI, USA

Introduction

- Ventral precuneus-posterior cingulate (VP-PC) region is anatomically sheltered
 - Difficult to study by noninvasive means
- VP-PC distant connections
 - Dorsal stream: ventromedial prefrontal cortex
 - Ventral stream: parahippocampal gyrus
- VP-PC functions
 - Default Mode Network

Introduction

- Epilepsy arising from the VP-PC region has variable semiology
 - Connectivity provides multiple routes of ictal spread
 - Semiology may be characteristic of spreading pattern
- VP-PC sites of epileptogenicity can masquerade as other, wellcharacterized forms of epilepsy
 - Mesial temporal lobe

Semiology

- Epigastric discomfort w/o rising or experiential sensations
- Behavioral arrest with staring and rightward versive eye motion
- Intentional walking in a particular direction
- Tonically flexed posture at waist with extension of right arm backward w/ upturned palm
- Inarticulate or nonsensical vocalization
- Postictal word finding difficulty and fatigue
- Medical management
 - Lamotrigine, carbamazipine, topiramate, perampanel, and clonazepam

- Imaging / Electrographic studies
 - MRI: no overt pathology
 - Phase 1 scalp EEG: parasagittal / centroparietal activity at ictal onset
 - MEG: unremarkable
 - <u>fMRI</u>: left hemispheric speech dominance
 - <u>Phase 2 surface EEG</u>: VP-PC and posterior parahippocampal gyrus sites of epileptogenicity (figure 1)
- Other studies
 - Neuropsychological: FSIQ -19pts; VCI -9pts (between ages 10 and 14)

Figure 1. Case 1: phase-2 surface electrodes.

Management

- Responsive Neurostimulation (RNS) implantation targeting sites of epileptogenicity
- Discharge medications: lamotrigine, carbamazepine, topiramate, levetiracetam

Outcome

- Clinically seizure-free x 5yrs
- RNS recordings continue to show interictal spike activity
- Medication tapered: lamotrigine, brivaracetam
- Improvements in FSIQ, visual spatial index, working memory index
- Employed as mechanic

- Semiology
 - Aura: nausea, malaise
 - Tendency to walk with intent
 - Mumbling, spitting
 - Rubbing, pinching nose w/R hand
 - Postictal fatigue
- Medical management
 - Lamotrigine, oxcarbazepine, levetiracetam, clonazepam

- Imaging / Electrographic studies
 - Phase 1 scalp EEG: R anterior/mid temporal ictal onset
 - MRI: no lateralizing or localizing features
 - <u>PET</u>: no lateralizing or localizing features
 - Phase 2 surface EEG: appeared to confirm R mesial temporal epilepsy (figure 2)
 - Note: R mesial frontoparietal cerebral surface not sampled
- Other studies
 - Neuropsychological: no significant discrepancy between VCI and PRI, average scores

Figure 2: Case-2 phase-2 surface recordings revealed R mesial temporal spike activity

- Initial management
 - R mesial temporal resection
- Initial outcome
 - Three generalized seizures at 7mo
 - Subsequent return to original seizure pattern w/ decreased intensity
- Further studies
 - MRI: slowly evolving enhancing lesion in R posterior VP-PC region (figure 3a-c)
 - Intraoperative depth electrocorticography: interictal discharges arising from lesion (figure 3d)
 - <u>Lesion pathology</u>: pilocytic astrocytoma w/ adjacent cortical dysplasia

Figure 3. Case 2: post-resection MRI (a, b, c) showing R posterior VP-PC lesion and subsequent intraoperative depth electrocorticography (d) with interictal discharges

- Further management
 - VP-PC lesion ablated via stereotactically-guided laser interstitial thermal therapy (LITT)
- Outcome
 - Clinically seizure-free x 3yrs
 - Medication tapered: clobazam
 - Employed part-time
 - Subsequent analysis of tractography showed projections from VP-PC lesion to region of temporal lobe initially thought to be the site of epileptogenicity (figure 4)

Figure 4. Case 2: tractography demonstrating projections from VP-PC lesion to ipsilateral temporal lobe.

Key Points

- 1. The ventral precuneal-posterior cingulate area (VP-PC) represents a salient hub within the default mode network with extensive connectivity along two primary streams dorsal and ventral targeting both frontal and temporal lobes, respectively.
- 2. Ictal expression may manifest both intrinsic features characteristic of local attribution or instigate remotely-activated semiologies suggestive of distant spread.

Key Points

3. Of particular concern, may be a propensity for expressing a mesial temporal epileptogenicity which may be difficult to discern from the more common primary condition.

4. The deep location of the VP-PC within the mesial ventral parietal surface, in the absence of an overt lesion, makes the diagnosis problematic. Reliance on clinical acumen to reconcile the variability in ictal expression with such a location and quantitative neuroimaging measures that may discount a primary temporal lobe epilepsy must guide appropriate decision-making.

